ABSTRACT
Fuzzy time series (FTS) forecasting is a technique based on time series and fuzzy logic theory developed for the purpose of analysis and prediction of time series events. The proposed Fuzzified Trend Mapping and Identification (FTMI) model uses a Re-Partitioning Discretization (RPD) approach to optimize the partitioning of the interval lengths and high-order fuzzy relations to construct the trend values. In the proposed model, the mapped out trends are fuzzified into classes both in linguistic and numeric terms to capture both the uncertainty and fuzziness inherent in the trends. Each trend class is given distinct ordinal position for ease of identification during deffuzzification and forecasting. The proposed model is tested on three time series data of different structural and statistical characteristics using mean average percentage error (MAPE) as statistical performance measure. The adaptability of the proposed model to different time series events is also tested using statistical measure of dispersion (variance). Empirical result shows an increase of over 50% in forecast accuracy over pioneer and recent models. Also, the statistical variance of the forecast errors of the proposed model from the
MAPE were 0.12, 0.488 and 1.267 compared to 0.58, 8.037 and 4.915 of Shah’s (2012) model for the three time series data respectively. These results demonstrate both the superiority of the proposed FTMI model in accuracy of prediction and its robustness in adaptation to time series of different structural and statistical characteristics when compared to existing models. The effect of increasing the order of difference on both the data trend and the accuracy of forecast are also investigated. Results obtained show that it does not necessarily increase the forecast accuracy regardless of the structure of the time series. The FTMI model is also applied to forecast the short term Internet traffic data of ABU, Zaria. The empirical result shows a MAPE of 0.27 for the Internet traffic, indicating a good accuracy of prediction considering the large size of these traffics.
Terms of Use: This is an academic paper. Students should NOT copy our materials word to word, as we DO NOT encourage Plagiarism. Only use as a guide in developing your original research work. Thanks.
Disclaimer: All undertaking works, records, and reports posted on this website, eprojectguide.com are the property/copyright of their individual proprietors. They are for research reference/direction purposes and the works are publicly supported. Do not present another person’s work as your own to maintain a strategic distance from counterfeiting its results. Use it as a guide and not duplicate the work in exactly the same words (verbatim). eprojectguide.com is a vault of exploration works simply like academia.edu, researchgate.net, scribd.com, docsity.com, course hero, and numerous different stages where clients transfer works. The paid membership on eprojectguide.com is a method by which the site is kept up to help Open Education. In the event that you see your work posted here, and you need it to be eliminated/credited, it would be ideal if you call us on +2348064699975 or send us a mail along with the web address linked to the work, to eprojectguide@gmail.com. We will answer to and honor each solicitation. Kindly note notification it might take up to 24 – 48 hours to handle your solicitation.