ABSTRACT
In this project, two high performance adder cells are proposed. We simulated these two full adder cells using HSPICE in 0.18 µm, CMOS technology and at 25-degree of temperature with supply voltage range from 0.5v to 3.3v with 0.1v steps. Results show that the proposed adders operate successfully when connected to a 0.5 V power supply. The two adders differ in the technology applied to their gates. While the first circuit applies CMOS technology, the second and optimal one uses Past Transistor Logic. The average power dissipation of the optimum is 4.3269*10-7 watt, which illustrates an amazing performance. This paper demonstrates the PDP and Power Consumption of the proposed adders, and the comparison results among another six full adders.
TABLE OF CONTENTS
Certification
Dedication
Acknowledgment
Table of content
CHAPTER ONE
1.0 Introduction
1.1 Background of the study
1.2 Aims and objectives
1.3 Significance of the study
1.4 Limitation
CHAPTER TWO
2.0 Literature review
2.1 Calculation on the design and its layout
2.2 List and function of components and other materials used
2.3 Relays and its types
CHAPTER THREE
3.0 Wiring diagram
3.1 Circuit diagram
3.2 Specification
3.3 Electrical legend
CHAPTER FOUR
CHAPTER FIVE
5.0 Conclusion and Recommendation
5.1 Bill of engineering measurement and evaluation (BEME)
5.2 Appendix
5.3 References
Terms of Use: This is an academic paper. Students should NOT copy our materials word to word, as we DO NOT encourage Plagiarism. Only use as a guide in developing your original research work. Thanks.
Disclaimer: All undertaking works, records, and reports posted on this website, eprojectguide.com are the property/copyright of their individual proprietors. They are for research reference/direction purposes and the works are publicly supported. Do not present another person’s work as your own to maintain a strategic distance from counterfeiting its results. Use it as a guide and not duplicate the work in exactly the same words (verbatim). eprojectguide.com is a vault of exploration works simply like academia.edu, researchgate.net, scribd.com, docsity.com, course hero, and numerous different stages where clients transfer works. The paid membership on eprojectguide.com is a method by which the site is kept up to help Open Education. In the event that you see your work posted here, and you need it to be eliminated/credited, it would be ideal if you call us on +2348064699975 or send us a mail along with the web address linked to the work, to eprojectguide@gmail.com. We will answer to and honor each solicitation. Kindly note notification it might take up to 24 – 48 hours to handle your solicitation.