ABSTRACT
The increasing rate of cancer patients worldwide, and especially Africa has led to numerous efforts to battle it. One approach to this has been localized drug delivery to reduce the quantity of drugs needed for therapeutic effect. Poly-di-methyl-siloxane (PDMS) is an elastomer with much focus on it as a microfluidic device. PDMS is one polymer of choice for localized drug delivery due to its biocompatibility, transparency, and ease of fabrication. However, its highly hydrophobic nature does not allow it to be used without modification. This work presents results of experimental and computational methods for PDMS surface modification. Also computational results of shear assay model for the effects on surface modification on cell adhesion is present. Modifying the surface of the PDMS was done by varying the mix ratio and curing temperatures after fabrication. The results from the experiment shows that low base to curing agent ratio and increasing curing temperature gives a highly stiff PDMS. Also, the PDMS treatment via boiling water and Ultraviolet Ozone (UVO) methods makes it hydrophilic with the generation of hydroxyl (OH) group on the substrates. These studies provided understanding of cell-surface interaction on a multi-scale. Morphological studies with Scanning Electron Microscope (SEM) reveal a layer and textured featured formed on UVO treated and PLGA coated PDMS. Shear assay model showed that cells on modified PDMS surface low energy release rate on application of shear load. This signifies that cells adhered to the modified surfaces better, thus could not be easily detached.
1.0 CHAPTER ONE
1.1 INTRODUCTION
The treatment of injury, disease and congenital malformation from traditional to scientific has been part of the human experience. Better ways are sought to improve human life. One disease that is currently taking human lives is cancer. Cancer is second only to cardiovascular disease [1, 2], and with current trends is likely to become the leading cause of death globally by 2030 [1].
In a quest to battle this globally threatening disease, research is being done to improve on conventional methods of detection and treatment [3-6]. This is to reduce the various side effects that accompany existing methods based on surgical procedures, radiation therapy, including bulk systemic chemotherapy. It is important to explore alternative approaches that can reduce the killing of normal or healthy cells during the cancer treatments.
An emerging field, tissue engineering, which provides an approach for the repair and fabrication of tissue from living cells [7] offers a better approach to cancer treatment. Soft tissue engineering plays a vital role in the treatment of cancer through implantable device.
Terms of Use: This is an academic paper. Students should NOT copy our materials word to word, as we DO NOT encourage Plagiarism. Only use as a guide in developing your original research work. Thanks.
Disclaimer: All undertaking works, records, and reports posted on this website, eprojectguide.com are the property/copyright of their individual proprietors. They are for research reference/direction purposes and the works are publicly supported. Do not present another person’s work as your own to maintain a strategic distance from counterfeiting its results. Use it as a guide and not duplicate the work in exactly the same words (verbatim). eprojectguide.com is a vault of exploration works simply like academia.edu, researchgate.net, scribd.com, docsity.com, course hero, and numerous different stages where clients transfer works. The paid membership on eprojectguide.com is a method by which the site is kept up to help Open Education. In the event that you see your work posted here, and you need it to be eliminated/credited, it would be ideal if you call us on +2348064699975 or send us a mail along with the web address linked to the work, to eprojectguide@gmail.com. We will answer to and honor each solicitation. Kindly note notification it might take up to 24 – 48 hours to handle your solicitation.